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Stability Theory of Difference Approximations for 
Mixed Initial Boundary Value Problems. II 

By Bertil Gustafsson, Heinz-Otto Kreiss and Arne Sundstrom 

Abstract. A stability theory is developed for general difference approximations to mixed 
initial boundary value problems. 

The results are applied to certain commonly used difference approximations which 
are stable for the Cauchy problem, and different ways of defining boundary conditions 
are analyzed. 

1. Introduction. Consider a first order system of partial differential equations 

(1.1) Ou(x, t)/at = Aau(x, t)/ax + Bu(x, t) + F(x, t) 

in the quarter-plane 0 < x < c, t > 0. Here, A and B are constant square matrices 
and 

u(x, t) = (u() (xI t), ... I U(n) (XI t))'I F(x, t) = (F(1)(x, t), F- (nf) (X t))' 

are vector functions. Furthermore, A is Hermitian and of the form: 

(1.2) A ={A 0] with Al < O, A2 > O 

0 A2 

The solution of (1.1) is uniquely determined if we prescribe initial values for t = 0: 

(1.3) u(x,0 ) =f(x), 0 < x < co, 

and boundary conditions for x = 0: 

(1.4) U'(0, t) = SUII(0, t) + g(t), t > 0, 

where 

uI = (u1 ) u'(I)) and uI = (u' . u 

correspond to the partition of A, and S is a rectangular matrix. 
We want to solve the above problem by difference approximation. For that 

reason, we introduce a time-step k > 0, a mesh width h = 1/N where N is a natural 
number, and divide the x-axis into intervals of length h. As usual, we assume that 
k/h = X = const. Let p, q, r, and s be natural numbers and use the notation 

vM(t) = v(x>, t), x, = vh, v = -r + 1, -r + 2, I., 0, 1, . . 

We approximate (1.1) for v = 1, 2, ***and t = tr = rk, = S, S + 1, **by a 
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consistent multistep method 

(1.5) Q-1vj(t + k) = j Q,v,(t -ck) + kF,(t). 
a=o 

Here, 
V 

Q,= E Ai5(h)Ei, Ev, = vv+ 
i =-r 

are difference operators with matrix coefficients which depend smoothly on h. For 
the solution of (1.5) to be uniquely determined, it is necessary to specify initial values 

(1.6) v,,(ok) = fj(ak), a- = 0, 1, 2, *, v = -r + 1, -r + 2, * * 

and, for t = tr > sk, boundary conditions 

(1.7) v,(t + k) = S S)vl(t - ak) + g,(t), A = -r + 1, *, 0, 
a=--i 

where 

q 

(1.8) SW = E C'Ei 
j =o 

are onesided difference operators, i.e. (1.7) expresses the solution at the boundary 
point x, < 0 in terms of the solution at interior points. 

The aim of this paper is to generalize the stability theory of [1] to the non- 
dissipative case. Furthermore, we shall also treat the case with two boundaries, i.e. 
consider the differential equations (1.1) for 0 < x < 1, t ? 0. Then, we also have to 
specify boundary conditions for x = 1. In this paper we will treat only the case with 
constant coefficients. However, the generalization to equations with variable coeffi- 
cients poses no new difficulties because stability is always proved by the energy 
method. 

We shall use the same notations as in [1] and assume that the reader is familiar 
with that paper. 

2. Estimates for the Differential Equations. As a preliminary, we shall derive 
some estimates for the solutions of the differential equations. The reason why we 
derive these inequalities is that the same type of technique is later used to give 
estimates for the solutions of the difference approximations. 

Let us introduce the L2-scalar products 

(u,v) = u*(x, t)v(x, t) dx, (u, V)1 = f u*(x, t)v(x, t) dt, 

(u, v)., = f f u*(x, t)v(x, t) dx dt, 

and define the corresponding L2-norms in the usual way by Ilull2 = (u, u). We denote 
the corresponding L2-spaces by L2(x), L2(t) and L2(x, t), respectively. 

The following estimate is well known: 
THEOREM 2.1. Let F = g = 0. For every f E L2(x), the problem (1.1)-(1.4) has a 
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unique solution which belongs to L2(x) for every fixed t. Furthermore, there are real 
constants a0, K0 such that for all f and all a > a0 an estimate 

(2.1) |1 e a tu(x, t)l I. < Koj-jf(x)jjx 

holds. 
We can also prove 
THEOREM 2.2. Let f = F = 0. There is a constant a0 ? 0 such that (1.1)-(1.4) has, 

for every g(t) & L2(t), a unique solution u(x, t) with e-atu(x, t) & L2(x, t) for a > a0. 

Furthermore, there is a constant Ko such that, for all g, 

(2.2) |le tu(O, t)IIt < Kojjeag(t)jjt, 

and 

(2 .3) (cz-ctO) | le at u(x, t) | 12, t -< Ko|l-at g(t) | 12 (2.3) (a - ao) Ie-atux t)I ? Ko e 

Proof. Here, we shall only prove the estimates. Let u(x, t) be a solution with 
e- atu(x, t) & L2(x, t) for all sufficiently large a. Introduce into (1.1)-(1.4) a new 
variable w = e-tu. Then, 

(2.4) Owl& = 
Aaw/ax + Bw- aw, 

w(x, O) = 0, W'(O, t) SWI(0, t) + g(t), 

withg= e-atg. 

Defining now w- 0 (and g(t) 0 O) for t < 0, we can remove the initial line 
t = 0 and consider (2.4) as a boundary value problem for - < t < o. Fourier 

transforming (2.4) with respect to t then gives us the system of ordinary differential 

equations 

(2.5) swv = A dw/-dx + Bwv, s = i + ae, w = w'(x, s), 

with boundary conditions 

(2.6) ^i(0, S) = SW'(0, S) + g 

Here, 

. + r+ 

w = w(x, s) = (2r)z /2 J e-ittw(x, t) dt = (2ii)-1/2 J e-t u(x t) dt. 

We can write (2.5) in the form 

(2.5a) dwv/dx = MO, M = sA 1(I - s 1B). 

From (1.2), it follows that there is an ao > 0 and a nonsingular transformation 

T = I + s-'T1 + s-2T2 + ... 

such that, for Re s > ao, 

TMT1 = [ ] with Ml + M* < 0, M2 + M2* > 0 

O M2e 

Introducing the transformed variable j=TO into (2.5a), we obtain 
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(2.7) d9/dx =; 

O M2, 

with the solution 

9I(x, s) = eMl x (O, s), 9"(x, s) = eM2 
g (O, s). 

The boundary conditions (2.6) get the form 

(T A) = S(T-1A)II + _ 

which can also be written as 

(2 . 8) gA(O, S) = SgI(O, S) + O(S1)A(O, S) + -^ 

In addition, we have by assumption 

,| 9(x, s)II dx = JIITWIIX dx < const x.t = const Ile atu(x, t)Ix,t < 

for all sufficiently large a. Because eM2x is exponentially increasing, we get jlI(O, s) = 0 
and (2.8) thus implies, for sufficiently large a0, 

I (O, s)l = IT (O, s)I < const Ig . 

Therefore, (2.2) follows from Parseval's relation. 
Assume now that also IBI < ao and multiply (2.5) by w*. Then 

aIIiwIIx = Re(w, A dw/dx)x + Re(w, B0)x 

= -A1l,*(O, s)AwO(O, s) + Re(w , B O)x _ const igi2 + a0 IIwIxI, 

i.e., 

(a - ao) IIiIIX = const ig 12, 

and (2.3) follows again from Parseval's relation. 
Finally, we shall prove 
THEOREM 2.3. Let f = 0. There is a constant a0 such that (1.1)-(1.4) has, for every 

F & L2(x, t) and g(t) & L2(t), a unique solution u(x, t) with e-atu(x, t) & L2(x, t), 
e-atu(O, t) & L2(t) for a > a0. Furthermore, there is a constant Kn such that, for all 
F and g, 

(2.9) ( ) |a - ao) t u(O, t) 1 12 + (a - ao)2 I le-atu(x, t) II,2 

< K2((a - ao) |ea g(t)|1 + le atF(x, t)II,. t 

Proof. Again, we shall only prove the estimate. Let u(x, t) be a solution for which 
e- atu(x, t) & L2(x, t), e -atu(O, t) & L2(t) for all sufficiently large a. Then, we can 
again introduce a new variable 

w = e-tu for t > 0, w = 0 for t < 0, 

and get, instead of (2.5), (2.6), 

(2.10) sw = A dl/dx + BO + F, s = + a, 

(2.11) w "(0, s) = SW'I(0 S) + -^ 
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Here, w(x,s) E L2(x) for sufficiently large a. Now let 

H= PI 0] H= , p = const > 0, 

be a matrix. From (2.10), we get, by partial integration, 

a(v', HO). = Re(w, HA dw/dx), + Re(wv, HBO) + Re(w, HF ), 

< R + IBI 11w112 + a(w Hwv-) + lca- IIPII 2 

where 

R = 2(W(0, s))* p A1 I(0, s) - (W' (0, s))* A2 W" (0, S). 

Using the boundary conditions, we can choose p so small that 

R ? - 6 IW'(0, S)12 + I -1 g^2 

Here, a > 0 is a constant. Therefore, we get 

a((pa - 21B1) I I 'i1 + 8If(o, s)12) 
< 

Ii IfI 2 + 8lalg412 

and (2.9) follows from Parseval's relation with a,0 = 21B1/p. 

3. The Stability Definition. While, for the differential equations, all estimates 
(2.1)-(2.3), (2.9) hold at the same time, this is not true of the corresponding estimates 
for the difference approximations. As a consequence, there are several ways to define 
stability of difference approximations. We shall discuss some possible definitions. 
(Questions of convergence will be treated in a coming paper.) Let 12(x) denote the 
space of all gridfunctions v, = v(x,), xv = vh, v = -r + 1,-r + 2, ... , 0, 1, * . 

with Ev=-r+1 Iv,2h < co and define the scalar product and norm by 
ao 

(3.1) (u,v)w = E U*vVh, UIIuIx = (U, U)x. 
v=-r+l 

We define 12(t) and 12(x, t) in the corresponding way and denote by 
0 

(3.2) (u,v) t = E u*(t()v(t))k h Ik,||12 = (Us U)t' tr = ( k, 
-T=O 

00 c 

(3.3) (asv)x,t = E E U*(t,)v,(t,)hk, IIU112xt = (as U)'tt 
r=0 v=-r+1 

the corresponding norms and scalar products. 
Remark. We use the same notation as in the continuous case. There is no risk 

for confusion because from now on (u, v)x, (u, v)t and (u, v), t are always defined by 
(3.1)-(3.3), respectively. 

Assumption 3.1. The Eqs. (1.5)-(1.7) can be solved boundedly for v(t + k), i.e., 
there is a constant K1 > 0 such that, for every G E 12(x), there is a unique solution 
w E 12(x) of 

Q-iw,, = G9, v = 1, 2, * , 

- ( = gI , , = -r + 1, * * -1, 0, 
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with 

IIwII< - K1( IGIIX + h E IgyI2) 
,u =-r+l1 

(Osher [5] has given conditions such that this assumption is fulfilled.) The first 
possibility is to use the same definition as for the Cauchy problem (see also Theorem 
2.1). 

Definition 3.1. Consider the difference approximation (1.5)-(1.7) with g, = F, = 0, 
u =-r + 1, ..., 0, v = 1, 2, . The approximation is stable if there are constants 

Ko > 0, a0 > 0 such that, for all t = tr = rk, all a > a0, all h and all f, an estimate 

3.4) 1 le- v1x - E Il|f(oak)|l1x a=O 
holds. 

In the same way as for the Cauchy problem, the analogue of Duhamel's principle 
gives us 

LEMMA 3.1. If the difference approximation is stable in the sense of (3.4), then the 
estimate 

(3.5) IIa tV(t)II ? 2< IIt(o_k)II 1 + (a -a0y1 tik 
,l) 

11 (3.5) 1 le-tt)1 < = o E I1fkl2+(!co- le a+iF(rk lx k) 
a=O = 

is validfor the inhomogeneous problem with g, = 0, ,u = -r + 1, , 0. 
The trouble with Definition 3.1 is that it is very difficult to develop a general 

stability theory. The following definition is more useful: 
Definition 3.2. Assume that f,(ak) = 0, v = -r + 1, ... , 0, 1, ...; = 0, 

* , s. The approximation is stable if, instead of (3.4), an estimate 

(a a0) 2IIatVII12,t <K0(IIea (t 
+k)FII, t 

a ( t+k)H2 
(3.6) kak n)2 I - < K e- Fl+x 1 + h .=II+1 

holds. (We set F, 0 for , < 0 and t < sk, a convention we shall always use.) If 
the approximation is stable according to Definition 3.1, then it is also stable with 
respect to Definition 3.2. This follows from Lemma 3.1. We conjecture that the two 
definitions are equivalent. 

A stability definition should preferably be such that one can use it "pointwise" 
for equations with variable coefficients and that one can check the stability as easily 
as possible. The last definition fulfills the first condition. However, necessary and 
sufficient stability conditions are not simple. To demonstrate this, we shall derive 
such conditions for dissipative approximations. In general, we use rather the stronger. 

Definition 3.3. Assume that f(ak) = O, = 1,2, ... , s. The approximation is 
stable if, instead of (3.6), 

/_____ 0 (a o~2 IetI 
(37 a - IIeact 

i 
+ a\k o a 

V11 aok + 1) E lle V.ii 
I 

(eX + I) lle- Vl z (3.7) /+ =r+l I1 
0 

2((a a0) a ae (t+k) 12 + -a(t+k)lF2 ) K ak + I l HUt + I- xt/ 

holds. 
Definition 3.3 is obviously stronger than Definition 3.2 and is suggested by 

Theorem 2.3. In this case, necessary and sufficient stability conditions are as simple 
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as possible. Most difference approximations in use are stable in this sense, although 
there are some which are only stable in the sense of Definition 3.2. In practice, it is 
not too important in which sense the approximation is stable, once an estimate of 
type (3.6) or (3.7) has been found. 

The assumption f(ak) = 0, a- = 1, I , s, is unimportant. As an example, consider 
the case g = F = 0 for which we get 

THEOREM 3.1. Let g = F = 0 and assume that the approximation is stable with 
respect to Definition 3.2 or 3.3. Then, there is a constant K1 such that 

/2 8 

(3.8) (ka - ?a ) I le- < h-aKI E Ilf(ok)II2 

and, therefore, 

(3.9) (k ?)2 le- x = (hk)-1 K, E Ilf(ok)Illx. 

Proof. Let w be the function satisfying (1.7) and with 

w (t) = 0 for v _ 0, t _ sk, w (t) = f (uk) for v ? -r + 1, t = ak. 

Then, y = v - w is the solution of (1.5)-(1.7) with homogeneous initial values and 
boundary conditions and a function F for which I FI t< const h- 1 = 1f(uk)I X. 
Therefore, (3.8) follows easily from (3.6) or (3.7). 

In the same manner, it is easy to show that it is sufficient to study the case g. = 0, 
= -=r + 1, * * *, 0, in Definition 3.2. 

THEOREM 3.2. If an estimate (3.6) holds for the case g, 0, the approximation is 
stable according to Definition 3.2. 

Proof. Let w be the function defined by w,,(t + k) = g,,(t) for t _ sk, ,u = 

-r + 1, * * *, 0; w,(t) = 0 otherwise. Then, y = v - w is the solution of (1.5)-(1.7) 
with homogeneous initial and boundary conditions, and (3.6) follows directly. 

The generalization of the above definitions to problems with two boundaries is 
obvious. 

In certain applications, it is interesting to know whether there are any exponentially 
growing solutions or not. We may then use 

THEOREM 3.3. If a0 = 0 in (3.6) or (3.7), then there are no exponentially growing 
solutions. 

Proof. Choose a = T-1 for every fixed time T > 0. 

4. The Resolvent Condition. In this section, we want to show how the question 
of stability can be reduced to an estimate of the solution to a resolvent equation. 
Connected with the Definitions 3.2, 3.3, there is the following resolvent equation: 

8\ 

(4.1) Q-1 - z= P,, v' = 1, 2, 
a =O 

with the boundary conditions 

(4.2) w _ z-1Say W' = g, su = -r + 1, **. , 0. 
H=b 

Here, z is a complex number and wv E 12(x). 
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We start with the Ryabenkii-Godunov condition: 
LEMMA 4.1. Let the approximation be stable in any sense. Then the homogeneous 

equations (4.1), (4.2) have for Izl > ea' k only the trivial solution =_ 0. 
Proof. Assume that wi' & 12(x) is a nontrivial solution. Then v(x,, t) = Ztlkp is a 

solution of the difference approximation with F = g = 0 and f,(uk) = zuw,. This 
solution grows faster than e t, which is impossible by Theorem 3.1. 

We now have two theorems, relating the estimates (3.6) and (3.7) to estimates 
of the resolvent. 

THEOREM 4.1. The difference approximation is stable with respect to Definition 3.2 
if and only if there are constants a0 > 0, K1 > 0 such that (4.1), (4.2) have, for every 
z with lzl > eac k and every F E 12(x), a unique solution with 

(4.3) ( I I ) II,I12 < K + h f 
IgM12). 

Proof. Consider (1.5)-(1.7) with f(ak) 0 and assume that the approximation is 
stable in the sense of Definition 3.2. Introduce w = e- v as a new variable. Then, w 
is the solution of 

(4.4) Q-1w,(t + k) = e- a(+l)kQuwW(t _ ak) + kF(t), a=o 

(4.5) W,(t + k) - cj e(a++l)kS (W)Wi(t - ak) = gk(t) a=O 

with 

(4.6) w(ak)- O, a- = , 1, * * ,s, 

and 
ci(t +k) -aCt +k) F, = ea F,, g,, = e atk. 

The stability assumption means that there is an estimate (3.6) so that 

(4.7) (:k+aD) II'IIxt _ Kt(IIZIt + h1 E=t+ 

The starting time t = 0 is completely arbitrary. We can choose any time t = to = rok' 
i.e., replace (4.6) by w(to + ak) = 0 and study the difference approximation for 
t ? to instead. Defining F w 0_ for t < to, we consider the Eqs. (4.4), (4.5) for 
all t = rk, r = 0, i 1, -2, * . . By assumption, there is for every F and g with com- 
pact support a solution for which (4.7) holds, provided we replace I F1 Ix,I1t by 
the corresponding sums over all t = rk, r = 0, -1, i 2, ... . Therefore, we can 
Fourier transform (4.4), (4.5) with respect to t. With w denoting the (real) variable 
dual to t and using the notation z = e(c+ 'k, we get the resolvent Eqs. (4.1), (4.2), 
where w', F^, and g are the Fourier transforms of w, kF and g, respectively. (The 
choice of notation F^ rather than kPF to denote the transform of kF may seem strange 
but simplifies the presentation.) 

By Parseval's relation, the estimate (4.7) goes over into 

(oak + 1) (I + X os=E+1 ig11 ) 
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where, as usual, X = k/h = const, and (4.3) follows easily. Now, it is well known 
that the functions F with compact support are dense in 12(x, t), and the corresponding 
g, are dense in 12(t). Therefore, (4.1), (4.2) have, for every F & 12(x), a solution for 
which (4.3) holds. This solution is unique by Lemma 4.1. 

We have thus proved that if an estimate of type (3.6) holds then the resolvent 
condition (4.3) must be fulfilled. We shall now prove the converse: Consider the 
Eqs. (1.5)-(1.7) with f(ak) = 0. Let F and g, have compact support and k be fixed. 
By Assumption 3.1, these equations have a solution with 

Ee2#,r I IV(Trk) 1 12 < O O 

Here, ,B > 0 is some constant. Replacing a by ,B/k, we can Fourier transform the 
Eqs. (4.4), (4.5) with respect to t and get the Eqs. (4.1) and (4.2) with z - e +ikand 

+ x0 
1 I -st + k) F,=k(2ii-12 J__o e- F, (t) dt, 

~ co gy= (2ii-Y1/2 j e s(t+k) g(t) dt, s = ice. + fl/k. 

Solving these equations, the inverse Fourier transform gives us 

v(t) = e(O/k)tw(t) = (2X)-1/2 f es t(z) dw, s = ic. + f/k, z = e'. 
co 

The resolvent condition (4.3) implies that wv(z) = f(e') is an analytic function of s 
for Re s > ao. Therefore, we can choose for ,B any positive constant ,B = ak > aok 
and (3.6) follows from Parseval's relation 

+x0 

za tV 1 1 1 l O(Z 1 12 IleatvI, t = i'() do 
-X 

and (4.3). This proves the theorem. 
In the same way, we can prove 
THEOREM 4.2. The diference approximation is stable with respect to Definition 

3.3 if and only if there are constants a0 > 0, K1 > 0 such that (4.1), (4.2) have, for 
every z with lzl > ea ok and all F, g, a unique solution with 

kQI e) ) 0 uw'12 + (1z e ) IIi'I 

? K l(kQzl eao ) 0 kg^2 + I1 12 

We shall now show that the stability definitions are invariant with respect to 
perturbations of order k. (This is well known for Definition 3.1.) 

THEOREM 4.3. Assume that the diference approximation (1.5)-(1.7) is stable in 
any of the above senses. Perturb the approximation by adding to the difference operators 
Q,a and Sa) terms of order k. Then, the resulting difference 'approximation is also 
stable in the same sense. 

Proof. Let the grid function G be defined by G, = F for v > 1 G, = for Iu ? 0. 
Then, we can consider the resolvent Eqs. (4.1) and (4.2) and its perturbation as a 
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mapping from 12(x) into itself and write them in the form 

ft)wv- = G and ((M(z) + k(51(z))v = G, w, G E 12(X). 

Let the approximation be stable in the sense of Definition 3.2 and let ca be a constant 
with 

Izi -k IIII -<2K for all IzI > e"a'. 
Izi - eao 

2 2K1 

Then, we get for these z values 

II((5 + k5II- l II _ I 1l ( + k(M1)-l lIl 

= I -k :|1011 110-1lix <- 21 

and for Definition 3.2 the theorem is proved. If we replace the norm 

jw~ij'z by I1vijj = (___ +1 + 'MI + 

the theorem follows for Definition 3.3 in the same way as above. By the same kind 
of perturbation argument, we get, from Assumption 3.1: 

THEOREM 4.4. There is a constant z. such that the estimates (4.3) and (4.8) hold 
for lzl > Iz41. 

Proof. For lzl -> c, the resolvent Eqs. (4.1), (4.2) and the estimates (4.3) and 
(4.8) converge to the equation of Assumption 3.1 and its estimate. 

5. The Main Results. In this section, we want to formulate the main results 
of this paper. By Theorem 4.3, we can neglect B and assume that the coefficients are 
independent of h. Thus, the resolvent Eqs. (4.1), (4.2) can be written as 

p 8 

(5.1) E Ai(z)E i.V = Pz, A (z) = -Azi,A,, + Ai(-), 
i =-ra= 

w & 12(x), wy = E (C,(z)w) + gM, 
(5.2) 8 

C (Z) = -C u = r + 1, * * . , 0. 

We shall start with stating the assumptions. 
Assumption 5.1. The approximation is stable for the Cauchy problem, i.e., if we 

consider (1.5) for all v = 0, ?1, ?2, *... , then we have, for a > ao, 

le- v(t)11 ? K 2E IIf(ak)12 with 111112 Z I2 h. 
a=O v=-CO 

Consider the Eqs. (1.5) with constant and of h independent coefficients for the Cauchy 
problem and Fourier transform them with respect to x. If F = 0, we get 

8 p 

Q-1(i0v(t + k) = O Qit)(t - a-k), A , = E Ajaet 
a=O-i=-r 
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Then, Assumption 5.1 implies: 
(1) The von Neumann condition is fulfilled, i.e., the eigenvalue problem 

(5.3) (6x(i o - Z a(iy)z VY = 0, 

which may also be written 
p 

s 

> A2(z)e"'y = 0, Ai(z) = -,z-'Ai, + A(-l), 
i =-r ?=0 

has no solution z with Izi > 1. 
(2) If z = z0 is an eigenvalue with multiplicity q and 1z01 = 1, then there are 

precisely q corresponding linearly independent eigenvectors. 
We always make either 
Assumption 5.2. Let zi, j = 1, 2, *.., (s + 1)n, be the eigenvalues of (5.3). If 

Zi = z for some t = t and IzI = 1, then zi, zi are continuously differentiable and 

(5.4) &z^(0O)/c39 $ O, v = i, j; 

or 
Assumption 5.3. The matrices A i, can be transformed to diagonal form by the 

same transformation. 
Furthermore, we assume 
Assumption 5.4. The approximation is either (strictly) dissipative or nondissi- 

pative, i.e., for the eigenvalues z; of (5.3), we have either Izil < 1 for all j and 
o < 1l _ ir or Izil = 1 for all j and all t. We do not know of any used difference 
approximation for which neither Assumption 5.2 nor Assumption 5.3 is fulfilled. 

For convenience only, we make also 
Assumption 5.5. Ap(z) and A r(z) are nonsingular for Izi ? 1. 
To derive stability conditions for the Definition 3.3, we need only consider (5.1), 

(5.2) with F = 0, i.e. we replace (5.1) by 

p 

(5.la) A Ai(z)E'iv. = 0. 
i=-r 

(5. 1a) is an ordinary difference equation with constant coefficients. Therefore, its 
general solution belonging to 12(x) can be written in the form 

(5.5) wV = E Pi(P)K' i(v,Z)(Ki(Z)) v 
K K I <1 IK j I<1 

Here, K; are the solutions of 
p 

(5.6) det E Ai(Z)Ki = 0, 

and Pi(v) are polynomials in v with vector coefficients. The degree of Pi(v) is one 
less than the multiplicity of the corresponding Ki. We shall now show that for Izi > 1, 
(5.5) consists of nr linearly independent solutions. We start with 

LEMMA 5.1. Let Izj > 1. Then the Eq. (5.6) has no solution K with IKI- 1. 
Proof. Assume that (5.5) had a solution K = ett, t real; Then there is a vector 

y 5 0 such that 
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p 

Ai(z)e'y = 0. 
i =-r 

This is the same equation as (5.3). The von Neumann condition implies that 
lzl > 1, a contradiction to the assumption. 

The solutions of (5.6) thus split for lzl > 1 into two groups: M1 containing those 
eigenvalues K with IKI < 1, and M2 containing those with IKI > 1. Furthermore, the 
number of eigenvalues belonging to M1 or M2, counted according to their multi- 
plicity, is independent of z for lzl > 1. Therefore, these numbers can be determined 
by considering (5.1), (5.2) for z -* c. In the limit z -> c, we get the equations 

p 

E AjE(_'Ei'v = Q-jvv = 0 
i=r 

with the nr linearly independent boundary conditions 
a 

iu- ECZ(_wi = u- S = g 
j=l 

By Assumption 3.1, these equations have, for every set of values g, a unique solution 
belonging to 12(x). Therefore, we have proved 

LEMMA 5.2. The number of linearly independent solutions in (5.5) is equal to nr. 
Thus, the general solution (5.5) depends on nr free parameters c = (cl, ... , Cnr)'. 

Inserting (5.5) into the boundary conditions (5.2) gives us a linear system of equations 

(5.7) E(z)c = g , g = (g0, -r+1Y 

and (5.1a), (5.2) have a unique solution if and only if detIE(z)l z# 0. 
We can now formulate our main result. 
THEOREM 5.1. The difference approximation is stable in the sense of Definition 3.3 

if and only if the Eqs. (5. la), (5.2) have a unique solution in 12(x) for all IzI > 1 and there 
is a constant K2, independent of z and g, such that 

0 0 

(5.8)~ ~ ~ 1 I i-V 12 < K22E Ig -2 izi > 1 
u=-r+l u=-r+l 

In Lemma 10.3 we shall formulate (5.8) also as a determinant condition. In [1], 
this was expressed in the following way: There are no eigenvalues or generalized 
eigenvalues for lzl > 1. 

For the stability Definition 3.2, we do not get such a simple result and we formulate 
the conditions first in Section 10. 

THEOREM 5.2. If the approximation is dissipative, then it is stable in the sense of 
Definition 3.2 if and only if the conditions of Theorem 10.3 are fulfilled. 

It should be pointed out that the above conditions need only hold in a neighbour- 
hood of lzl = 1. 

THEOREM 5.3. Let v7 > 0 be any constant and assume that detlE(z)l # 0 for 
lzl > 1 + -q and that the above conditions holdfor 1 < lzl < 1 + 77. Then the 
approximation is stable. 

There is no difficulty to generalize the above theorems to the case with two 
boundaries. The following theorem is-valid for any of the stability definitions. 

THEOREM 5.4. Consider the difference approximation for t > 0 and 0 ? x ? 1 and 
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assume that the corresponding left and right quarter-plane problems (which we get by 
removing one boundary to infinity) are stable. Then the original problem is also stable. 

6. Applications. Difference Approximations on a Quarter Space. In this sec- 
tion, we will investigate various boundary conditions for some commonly used 
approximations. 

I. Lax-Wendroff (L-W) Type Dissipative Schemes. Consider the system (1.1), 
(1.2), (1.3), (1.4) with F(x, t) 0_ , g(t) 0_ and the difference approximation 

(6.1) v(t + k) = v(t) + kBv(t) + kADov(t) + Ik2CD+D-v(t) 

where C > 0 is a matrix that can be transformed to diagonal form together with A; 
The condition 

(6.2) vo = Svo 

will always be used, and the following possibilities for specifying v"' will be studied: 

(6.3a) (hD+)'vl' = 0, j natural number, 

(6.3b) vll(t + k) = vl'(t) + kA"D+v1'(t), 

(6.3c) vO1(t + k) + v"'(t + k) - kA"D+v4(t + k) 

vO'(t) + v,'(t) + kA"D+vo'(t). 

The resolvent equation for (6.1) is in scalar form 

(6.4) ziv = AI + 2a (i-+1 - A + ' - 2 + i), v = 1, 2, 2 2 

where, by Theorem 4.3, we have neglected the term kBwi,. 
The characteristic equation takes the form 

(6.5) Xa 2 - ~~~~~~~~~~~~X 2c 
(6.5) ZK = K + 2 (K - 1) + - (K- 1)2. 

The following lemma is proved in [3]. 
LEMMA 6.1. There exists a a > O, such that for the roots K1, K2: 

I. If a < 0, then 

IK1I < 1 for jzj I 1,z $ 1, 

K1 = 1 forz= I, 

1K21 I 1 + a for zlz ? 1. 

II. If a> 0, then 

IKW ? 1 -a for Izi > 1, 

|K2I > 1 for Izj > 1, Z 1, 

K2 1 forz= 1. 

With help of this lemma, we can prove 
THEOREM 6.1. The approximation (6.1) is stable in the sense of Definition 3.3 with 
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the boundary condition (6.2) in combination with any one of the conditions (6.3a), 
(6.3b), (6.3c). 

Proof. With this form of boundary conditions, it is clearly sufficient to show (5.8) 
for each scalar equation with a > 0. The general solution of (6.4) belonging to 12(x) 
has the form 

WY = K1WO, |K ? 1 - < . 

We insert this solution into the condition (hD+)'iv' = 0, corresponding to (6.3a), 
and obtain 

(6.6a) *o(K1- 1) = 0. 

Since IK1 - 11 > 8 for Izl > 1, the determinant condition of (10.3) mentioned in 
Theorem 5.1 is satisfied and stability follows. (This was already shown in [3].) 

(6.3b) gives the condition 

(6.6b) -o I K1- Ki Xa ) = 0 

and for Xa < 1 (stability condition for the Cauchy-problem), we have 

i|K1 Xa | _ - 1 + Xa -Kl XaI ?8 for jzj _ 1; 
z -1I+Xa zIz-+ Xa I 

stability. (6.3c) implies 

(6.6c) WO(1 + K11z _ I + Xa( + 1)) =0. 

However, 

z+ ' Z- 1 Xa(z + 1) > IK11 
1Z I Xa(z + 1) > 

1 +K 
I 1+Xa(z + 1) = 

- z -1- Xa(z + 1)>1 
since Re (z + 1)/(z - 1) ? 0 for IzI _ 1; stability, and the proof of the theorem is 
completed. 

II. Nondissipative Schemes: Leap-Frog (L-F) and Crank-Nicolson (C-N). Con- 
sider the leap-frog approximation 

(6.7) v(t + k) = 2kADov(t) + v(t -k) + kB(v(t + k) + v(t -k)) 

with resolvent equations, for B = 0, 

(6.8) Z =WV zXa(+1- 1-) + 0, v = 1, 2, ... 

and characteristic equation 

2 z-1 (6.9) K - - K - = - O. Xaz 

For z = (1 + 77)ete, (6.9) has the roots 

i sin o + i7(1 + 1i)eo ({ (sin 0 - i(1 + 177)ei)2 
Xa(1 + r7) (Xa(1 + 

))2 

For z = etO, we thus get 
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a ( 

sin 
0)1/2 

Xa 
+[i ((Na)2-sin2 0)1/2 + i sin 0 

K1=1 +a (1- - a )2 =a 4 ((Na)2-sin2 0)1/2 _ i sin 0 

where the sign is to be chosen opposite to that of cos 0. 
LEMMA 6.2. The roots of (6.9) have the following properties: 
If Izi > 1, then |KI| < 1, IK2I > 1 and Re K1 < O for Re z > 0, Re K1 ? O for 

Re z < 0. 
If z = ei0, then 

|K11 < 1, jK2j > 1 for isin 01 > Xa, 

IKIt = 1, IK21 = 1 for Isin 01 _ Xa, 

(6.10) K1 = -1, K2 = 1 for 0 = 0, 

K1 = 1, K2 = -1 for 0 = r, 

Kl = K2 =4- forsin0= 4Xa. 
Let us now again investigate the boundary conditions (6.3), and also 

(6 .1) _(A+)V' = 0 

with - A+ defined by 

+u,(t) _ u+ 1(t - k) - u,(t). 

THEOREM 6.2. The approximation (6.7) is stable in the sense of Definition 3.3 with 
any of the boundary conditions (6.3b), (6.3c), (6.11) in combination with (6.2), but not 
with (6.3a). 

Proof. For IzI > 1, the general solution of (6.8) belonging to 12(x) is Wv = WOK1 

K1 I < 1. It follows immediately that there is no nontrivial solution for jzj > 1. Since 
K1(- 1) =1 satisfies (6.6a), the determinant condition cannot be satisfied and that ap- 
proximation is not stable in the sense of Definition 3.3. Condition (6.6b) gives i0 = 0 
for lIz > 1. For z = ei0, IIm(z - 1 - Na(K - 1)) = Isin 0 - Na Im Kl > 0 when 
sin 0/ > Na, and for isin 0/ ? Na, IRe(z - 1 - a(K - 1))l > (1 - 2a2)1/2 - 1 + 
Na > 0 for Na < 1. Also, Iz - 1 + Nal < 2 - Na, and we have stability. 

Condition (6.6c), for z = ?E 1, is 2vo = O and, for z = e i, 0 F 0, ir, 

|+Ki z- 1 -Xa(z++ _) isin0-Xa(l + cos 0) 
z- 1 + Xa(z + 1) - i sin 0 + Xa(l + cos 0) 

(Na + (N2a2 - sin2 0)1/2 + i sin 0\(a(l + cos 0) - isin 0\ 
=1- Xa ? (X2a2-sin2 0)12 - i sin 0Aa(l + cos 0) + isin 0 

21 sin 0(+(N2a2 - sin2 0)1/2 - Na cos 0) 
(Na +t (X2a2 - sin2 0)1/2 i sin 0)(Na(l + cos 0) + i sin 0) 0 

proving the stability. 
Condition (6.11) gives 

(6.12) W0(1 - Z K1) = 0, 

but from Lemma 6.2, 11- Z-K1l > 0 follows; stability, and the theorem is proved. 
We now consider the Crank-Nicolson scheme 
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(6.13) v(t + k) - 'kADov(t + k) = v(t) + UkADov(t), 
with resolvent equation 

(6.14) 4(z - 1)0, = X(z + 1)a('+1 - 0_j), v = 1, 2, ... 

and characteristic equation 

(6.15) K2 0 
4 z - I 

K I , Z 7 -1. 

For z = e'0, (6.15) has the roots 

2i 0 1 _ 4 tan2 0/2\ 1/2 Xa + (X2a2 - 4 tan2 0/2)1/2 + 2i tan 0/2 
X2 

- 

Xa 2 (Xa)2 / Xa _:t (X2a2 - 4 tan2 0/2)1/2 - 2i tan 0/2 

By studying the roots for z = (1 + fl)et, v -+ 0, we obtain, for a > 0, 

LEMMA 6.3. The roots of (6.15) have the following properties: 
If Izl > 1, then Kli < 1, |K21 > 1with Re K1 < 0. 

If z = ei0, then 

|K11 < 1, IK2I > 1 for tanl s > - 
2 2 

2i 0 4 tan 0/2 1/2 

(6.16) Kl -= a tan 2-1 (Xa) 0 Xa 
f or tan - <- 

=2i tan 0 + - 4tan /2)1/2 
2 2 

We can now prove 
THEOREM 6.3. The approximation (6.13) is stable in the sense of Definition 3.3 with 

the boundary conditions (6.6a), (6.6b), (6.6c), and (6.11). 
Proof. For IzI > 1, the general solution to (6.14) is 0, = W0K0, KijI < 1, and again 

it is clear that the conditions (6.6) imply iTvo = 0 for IzI > 1. It is also obvious that we 
have stability with condition (6.3a) since K1 = 1 always. 

For (6.6b), (6.16) gives, for z = ej0, 

-Kl _ 1 > 11 - |K11 I > 0 for Itan 0/21 > Xa/2. 

Also, IIm(z- 1 - Xa(Kj - 1))l > Isin 0 - Xa Im K1 I> 0 for Itan 0/21 < Xa/2, 
0 F 0, and for 0 = 0, z - 1 - Xa(Kj - 1) = 2Xa > 0. We thus have stability. 
For (6.6c), (6.16) gives 

|+ K 
z - 1 - Xa(z + 1) 

1I_ z-1 I + Xa(z + 1) 

| Xa - (X2a2- 4 tan2 0/2)1/2 + 2i tan 0/2 i tan 0/2 - Xa 
1 

Xa - (X2a2-4 tan2 0/2)/2 - 2i tan 0/2 i tan 0/2 + Xa 

-2i tan 0/2(Xa + (X2a2- 4 tan2 0/2)1/2) . 

(Xa - (X2a2 - 4 tan2 0/2)1/2 - 2i tan 0/2)(i tan 0/2 + Xa) > 

for z = eto with Itan 0/21 ? Xa/2, 0 $ 0. 
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Furthermore, Ii + K1(Z - 1 - Xa(z + l))/(z - 1 + Xa(z + l))1 = 2 for 0 = 0 
and is larger than I I -I K1 I> 0 for itan 0/21 > Xa/2, proving stability. For con- 
dition (6.11), 1(1 - z?1Kj)1I > 0 follows easily from (6.16), since Re Ki < 0 for 
tan 0/21 ? Xa/2 and Kl| < 1 for itan 0/21 > Xa/2. 

III. Schemes for Systems with Characteristics in Pairs. For systems of the 
symmetric type (e.g., the wave equation) 

(6.17) ~~~ 4 l(l) = C a ;2 ()X s 
at ax~ 4p2) + F(1' (x, t), 

(6.17)at - x 
a +(2) = Cf d ;(l) + F (2) (X, t), 
at ax 

the use of staggered grids often reduces the computation time (for a given accuracy) 
by a factor of two. The term 'staggered' means that the vector j,1) is defined at points 
xv = vh, but the vector j(2) at intermediate points x,+12 = (v + ')h. With an error 
of 0(h2), we may then approximate the space derivatives by differences over a single 
step-length h: (aot/ax)., , (DoI)_, = (I/hXJ(x,+1/2) - *J(x 1X2)). The time-differ- 
encing may be chosen as the leap-frog or Crank-Nicolson type. 

We shall here investigate the stability of such difference schemes for a pair of 
scalar equations 

(6.18) ap61>/at = ca4/'</ax, 
a4t(2'/at = ca4MIp/ax, 

and boundary conditions of type 

(1) I1+s 1()0,t (6.19) ,t-(0, t) = _ 
+ S 6(2)(O t)+ g(t) - 

with -1 < s < 1 
The leap-frog approximation to (6.18) is 

(6.20) '{'*(1)( + k) =J'(t - k) + 2Xc(l'X2)12(t) -(2)/2(t)) 

'JV+'/2(t + k) = -L4 (t-k) + 2Xc(*J+)'(t) - ()(t)). 

To guarantee stability of the Cauchy problem, we assume 2Xc ? 1. 
If we now temporarily regard * 

(2) as defined also at points xv = vh 
and *(1) at points x,+112 = (v + ')h, we obtain the resolvent equations 

(6.21) (Z 1)(=:t + )v = +2ZXC[((l1) i 
? (2)) + 1/2(W(l) ? (2)),.1/2 

for v = 0, 2 1, * * with the solution, in 12(x), 

(*(1) + *(2)) = 12p(*(I) + *(2)o, ( * )v _ *(21) f(* 
1 

())O 

or 

=I) (1) 2v 1)2 = 1 V = 2 
Kl, ~v +1/2 '0I' K1 0, 1,2, 

at the original grid-points. K1 is here the root of 

K2 _ 1 = (Z - Z1)K/2Xc 
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which satisfies IKI < 1 for Izl > 1, cf. (6.9), (6.10) with a = 2c. We must now formulate 
a boundary condition corresponding to (6.19) in terms of the staggered-grid variables. 

For many physical problems, s = -1 so that *'F((0, t) = Igt), and for the 
resolvent equation, Theorem 5.1 immediately gives stability in the sense of Definition 
3.3; no additional condition is required. For -1 < s < 1, we propose the following 
equation to compute V'1', the accuracy of which is one order lower than (6.20): 

'J'(')(t + k) = tl) - k) 

(6.22) + (2) _ s * (t + k) + *J (t - k) + 

For the resolvent equation, it gives 

(6.23) - z-1 + 2Xc (z + z ') = 4XcJ1/2. 

Inserting J12 = Kl(') and using z - z-1 = 2XC(Kl + K2), we obtain 

(6.24) S01)(1 ( (Z + z1) - Kl + K2) 0. 

Since Re(K, - K2) has the opposite sign of Re(z + z- ) for izi > 1 and 
(1 - s)/(l + s) ? 0 for -1 < s < 1, |(1 - s)/(l + s)(z + z1) - Kl + K21 > 0 

except maybe for purely imaginary K1 - K2. In that case, however, z is also purely 
imaginary, and Im(K1 - K2) has the opposite sign of Im(z + z-1), so that we again 
have stability according to Definition 3.3. For s = 1, the boundary condition (6.22) 
does not give stability in the sense of Definition 3.3, since K1 - K2 = 0 for 

Z = zo = +2Xci + (1 - 4X2c2)1/2. 

With the energy method, it is, however, easy to show that the approximation is still 
stable in the sense of Definition 3.2. To obtain the same order of accuracy, we should 
then change g(t) into g(t) + 2(h/4c)2g" (t). 

The Crank-Nicolson scheme 

i4'( (t + k) = 

+ 2 ('I+1/2(t + k) +1/(2)(t) -1 -/2(t + k) - 1,,20)), 
(6.25) 

v+1/2(t + k) = - + 1/2() 

+ 2c (*'+)l(t + k) + VI1+)1(t) *V(')(t + k)-*V('(t)) 2 

gives the resolvent equations 

(6.26)(- 1((1) ? P(2)) = c (Z + 1)[(4(1) ' ? )(2) - (( + )v(2)/] 

with v = O, -, 1, i.. . As above, the solution in 12(x) iS 

((1) + -k (2)) = K2V'((1) 4_+ I(2))o, (2 - 2II) = (-K12((1_ - )n 
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where K, is now given by (6.15), (6.16) with a = 2c, or 
(1) = Co 

2v 
, (2) t(1) 2,v+1 V=O ,2 .&1)=4 Kl *,"v+1/2 

= *oK v = 0, 1, 2, 

If s = -1 in the boundary condition (6.19), we have directly 4,(1) = 0; stability. 
For -1 < s < 1, we propose the formula 

(1)'(t + k) = *()(t) 

(6.27) + *1/2(t+ k) + ['t2(t)- 1 +s (jl)(t + k) +'I' (t)) 

+ 1I+ s (g(t + k) + g(t))] 

For the resolvent equation, we then get 

-1 + Xc + (z + 1)I,1) = Xc(z+ 1)41/. 

Inserting the 12(x) expressions for j,1) and *12) this is simplified into 

* (( 1- S)/(1 + S) - 
(Kl 

- K2)/2) = 0, 

but since (6.15), (6.16) imply Re Ki < 0, Re K2 > 0, (1 - s)/(l + s) - (Kl - K2)/21 > 0; 
stability. 

If s = 1, iKl = K2 = ?i gives |(1 - s)/(l + s) - (Ki - K2)/21 = 0. As for the 
leap-frog scheme, this leads to stability of type Definition 3.2 but not of type 
Definition 3.3. Also in this case, we use the conventional energy method [with the 
norm =1111 (h/2)1*' 12 + E 1 h *(1) 2 2+ = h 1h+12) 121]. 

Finally, we study a "semi-implicit" scheme for a system with characteristics 
"nearly in pairs": 

a*(1) a*(1) a*~(2) 

(6.28) at ax + x E, c real, 
*(2) a a*2(1) 
at ax + ax 

where JEj < Icl and the boundary condition is *(1)(09 t) = *(2)(09 t) + g(t). An 
example of equations of this type are the linearized shallow-water equations, where 
often JEj << Icl. For such cases, the following approximation has been suggested: 

( '1' (t + k) = St(l)(t) - kEDO1 (1)(t + 
k 

+ Dc Do( (2) (t + k) + '1'2,(t)), 

*1(2)(t + k) = 
'(2)(t) - kEDO*1(2)(t + 

k 
+ 

Dc 
Do('(1)(t + k) + * 1'(t)). 

We may then use a staggered grid, in which j(1) is defined at the points x, = vh and 
*(2) at the points x+11,2 = (v + 1)h for the integer time levels and the opposite is 
true for the fractional time levels. 

Using the notation **(l)(t) for t'l(t + k/2) and 1* (2) (t) for *(2)(t + k/2), we 
may write (6.29) as a system of four equations in *j(1), 9j(2), j*(1) and j*(2) at times 
t and t + k. The corresponding resolvent equations are 
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(z 1)(4((1) ? ((2)) 

XE[(4w*(l) ? 4t*(2)) 
1/2_ (*(1) ? 1*( )p-1/2] 

Xc (Z + ) L (2)+ 4(22 - (,(1) ? 4())] 

(6.30) 
(Z - 1)(w~,*(1) ? 

_IE*(2)) 

= -XEZ[('J') ? '{'(2~),+1/2 - (W(1) + 
)P-1/2I 

Xc (Z + 1)[CI*(1) ? t*(2)) +1/2 _((2*(l) ? t*())-1/3], 

where we have temporarily assumed all variables exist at all points. 
The solution in 14(x) is 

(R(1) + 4 (2)) = ClK1 + C2K3, 

(4(1) - 
t(2)) = C3(-Kj) + C4(-K3) , 

(4*(1) + t*(2)), = Z112(C1Kj - C2K3), 

(&*(1) - 4t*(2)) = Z112(-C3(-K1)2i + C4(-K3) ) 

where 

2 2(z- 1) 
(6.31) K1,2 -1 

= (z + 1)Xc - 2Xezl2K12, 

2 2(z- 1) 
K3,4 I = 

(z + I)Xc + 2XEZl/2 K3,4, 

and |K11, |K3| < 1 when Izl > 1. It is easy to show that the Cauchy problem is always 
stable, since JEJ < Icl. 

The physical boundary condition 4(l)(0, t) = / 2)(0 t) + g(t) is not used in its 
original form. Instead, we propose the boundary formula 

*(1t + k) *(1)(t) -2XE[**/(2)(t) - '(*( )(t + k) 1+ *0o (t))] 

+XC[(2 k) + (2) (t) (t + k) 

(6.32) _- 'Il (t) + g(t + k) + g(t)]; 

** (2) (t + k) *(2)(t) - 22XE['I'22 + k)2- ) + k) + '*I(2) (t))] 

+ Xc['*(1l)(t + k) + k*('2)(t) - *(2)(t + k) 

- 0 -()(t) -2g(t + k)]. 

For the resolvent equation, they give 

((z - 1) + X(c - )(z + 1))4(lg = -2XE'*1/(2, + Xc(z + 1)'/2i, 

((Z - 1) + X(c - E)(Z + 1))4* = -2 2ez'I'2 + Xc(z + 1)*0) 

Inserting the 12(x) solution of the resolvent equation, we get 

( (c - E)(z + 1) _ K 
K2(Cl + C3) = O, 

\(z + 1) - 2E_zT 2 21(1+c)=0 
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( (C I 
EZ +112- 

1 - 
K4)(C 

~ +Cj= 0. 
(c(z + I ) + 2EzT12 2 + C4) 

From (6.31) follows that Re(K, - K2) < 0, Re(K3 - K4) < 0 for lzl 2 1, if the condition 
J El X < 1 is satisfied and I El < Ici. Furthermore, Re((c - e)(z + l)/(c(z + 1) i 2EZ'12)) 
> O if z -l and ic1 i K2, K3 - K4, for z = -I so that we must have cl + c3 = 

0, C2 + C4 = 0. Then 

4(1) =.(2) = 4*(1) = j,*(2)- 

v Tv++1/2 
_ 

T*=1/2 T *2 

proving the stability of the scheme in the sense of Definition 3.3. 

7. Further Applications. Difference Approximations on a Half-Strip. In this 
section, we will consider (1.1), (1.2), (1.3) on the strip 0 < x < 1, t > 0, with boundary 
conditions 

(7. la) uI(0 t) = S,u'(0, t) + go(t), 

(7. l b) u"(1, t) = S,u'(1, t) + gl(t). 

The corresponding conditions for the difference approximation are 
S1 

(7.2a) v,(t + k) = Ej S""vl(t - ak) + goA(t), = -r + 1, *.., 0, 

(7.2b) v,(t + k) = E S()vNl(t - ok) + gl(t), u = N, ., N + p - 1. 
a=-1 

It is clear from Theorem 5.4 that if the approximation is stable with (7.2a) on x> 0, 
and with (7.2b) on x < 1, then it is stable with (7.2a), (7.2b) on 0 < x < 1. However, 
there can be an exponential growth of the solution of type eaIk, since we have the 
term Ah in the resolvent estimate. We shall now investigate with which boundary 
conditions we do, and with which we do not, get such an exponential growth for 
Eq. (1.1) with F(x, t) 0_ and 

A = {-a }. 
A = 

As boundary conditions, we take 

(7.3a) u (0, t) = u" (0, t), 

(7.3b) u'(1, t) = u"(1, t). 

The approximation (6.1) with C = A' and boundary conditions, 

(7.4a) vo(t) = vO (t), vN(t) = v N(t), 

(7.4b) (hD+)v"'(t) = 0, (hD-)'v5(t) = 0, 
analogous to (6.3a) can be shown to have exponentially growing solutions for] = 2, 3. 
However, when using the boundary conditions (7.4b) combined with 

(7.4c) (1 - hD+)v(t) = 

(1 - h2 )I)vII(t) =VI (t) 

we avoid the exponential growth. 
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THEOREM 7.1. The approximation (6.1) with C = A2 and boundary conditions 
(7.4b) and (7.4c) is stable, and has no exponentially growing solutions. 

Proof. The stability of both quarter-space problems follows immediately from 
Lemma 6.1 and the proof of Theorem 6.1. The general solution to (6.4) can be written 

W75= C1 lKl + C12K2 

W,= C21K1 + C22K2, 

where K1 with IK11 < 1 and K2 with JK2j ? 1 are the roots of Eq. (6.5). When inserting 
the representation (7.5) into the boundary conditions, we obtain 

C11(K1 - 1)' + C12(K2 - 1)' = 0, 

C21(K1 - 1)' + C22(K2 - 1) = 0, 

-1 - K 1) ] + C12[[K2 - K2 (K2 - 1) = C21 + C22, 

C21[K1 - 1)2] + C22[K2 - K2 (K2 - 1)] = C11 + C12, 

or 

(Cll i C21)(K1 - 1j) + (C12 ? C22)(K2 1) = 0, 

(C1I1 + C21)(Kl - - 1K) + 1) + (C12 + C22)(K2 - K2 (K2 - 1) ? 1) = O. 

A nontrivial solution may exist if one of the conditions 

(7.6) (K1 - 1 2)[K2 - K2 (K2 - 1) + 1] - (K2 - 1)Vr - K1 (K1 - 1) ? 1] = 0 

is fulfilled. 
Since K1K2 =-(1 - Xa)/(l + Xa), IK11 < 1(1 -Xa)/(1 + Xa)I and we may neglect 

terms of order KN . Since also K2 - (K2 - 1)2 > 1, it is sufficient to show that (7.6) 
cannot be satisfied for K2 = e "it, e > 0; E, t small. Then 

(K_ - 1Y)[KN(2 - (1 - K_1)2) ) 11 - (K2 - 1 N[Kj(1 - (1 - K )) ) 1] 

(7.7) (K- 1(1 (1 K2[(1 iNt - ((K2 1)/(Ki - 
I - - - I 1- (1 

~~~~~~~~~~~~K2) 

But 

1 - (K2 - 1)/(Kl - 1)' 1 - ( + - t2/2)i/(- 1)(1 + j6) 
1 - ( 1 - K2 ) 1 (E + i)2 

< 1 + E for] = 1, 2, 3, . 

with = (1- Xa)/(l + Xa), so that (7.6) can never be satisfied. 
We notice also, that, with boundary conditions (7.4a), we would have 1 instead 

of 1 - (1 - Kc 1)2 in the denominator of the last term in (7.7), and, for j = 3, (7.6) 
is satisfied when E = 3O4/(2N). Equation (6.5) then implies 

IK1u 1 + 3I4/N - 

and, hence, the criterion for nongrowing solutions in this case is 

(7.8) N > 6/(1 - a). 

For nondissipative approximations, the investigation analogous to the one above 
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becomes more difficult, since we have a neighbourhood of the whole unit circle to 
take into consideration. 

The following table shows those approximations for which there are no exponen- 
tially growing eigensolutions. *means that the eigenvalues of @5(z) (defined in Section 
4) were obtained by a computer program for different X-values. 

Boundary Approximations with no exponentially 
condition growing eigensolutions 

(6. 3a), j = 1 L-W; C-N for N even 
(6.3a), j = 2 C-N for N even 
(6.3a), j = 3 L-W for N > 6/(1 - a); C-N for N even 
(6.3b) L-W; L-F*; C-N* 
(6.3c) L-W for N odd*; L-F*; C-N* 
(6.11) L-F for N even; C-N for N even 

For the wave equation (6.18), the leap-frog scheme (6.20) and the Crank-Nicolson 
scheme (6.25) have no exponentially growing solutions for the half-strip problem with 

T ()(O t) - 1 + sT(2)(0, t) + go(t) 
1-s I1-s 

T (1, t) = -T(2)(1 t) + g1(t) 

if we use the Eq. (6.22) and (6.27) to compute T(1) and corresponding formula for 
T1`, Nh = 1. The condition for such an eigensolution to exist is for the leap-frog 
scheme 

(\)N = ~(Z + Z-1)(1 - s)/(1 + s) + K2 - Kl (cf. (6.24)) 

and for the Crank-Nicholson scheme 

(\)N 2(1 - s)/(1 + s) + Ki - 
K2 (Cf. (6.28)) 

=Ki/ 2(1 - s)/(1 + s) + K2 - Kli 
c.(62) 

but in both cases, the magnitude of the right-hand side never exceeds 1 while IK21 is, 

by definition, never smaller than IK1. For the modified system (6.28), the analysis is a 
little more complicated but leads to a condition similar to that for (6.25). No eigen- 
solutions with exponential increase can exist. 

8. A Special Form of the Resolvent Equation. In this section, we shall write 
the resolvent equation (5.1) in a more convenient form. By assumption, A,(z) is 
nonsingular for jzj > 1. Then, we can write (5.1) in the same way as in [1] as a one-step 
formula: 

(8.1) W+= Mw, + G^, v = 1, 2, ... 

with w, = (0i+P_1, ... , rv -r)' and 
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lAp_l A*... A 
lA, 

F, 

(8.2) M=- _ 0 *.? G, = A2 o 

0 .. -I 0 0. 

Using (8.1), we can write the boundary condition (5.2) as nr linear relations for w, 
only. These we formally write as 

q+l 

(8.3) Sw1 = R(G) + g, IR(G)12 < const E IG, 2, g = (g- 
i'=1 

The following lemma is well known. 
LEMMA 8.1. The eigenvalues K of M are the solutions of (5.6). 
Let us denote by 12(h) the space of all vector functions w,, v = 1, 2, ,with 

IIwl I'= Eo 1 w,2h < o. We shall consider (8.1), (8.3) for any G E 12(h), i.e. not 
only for the particular G given in (8.2). This introduces no new difficulties because of: 

LEMMA 8.2. Consider (8.1), (8.3) for any G E 12(h). The estimate (4.8) holds (with 
a0 = 0) if and only if there is a constant K3 such that for all z with 1 < lzl < lzol (for 
the definition of z0o see Theorem 4.4): 

(8.4) kQ( T) E IWM12 + (I- 2 
IIWI2h < K3(kQ zI ) Ig2 + IGII2) 

The estimate (4.3) is valid if and only if 

(8.5) (IZ 1)2 IIW) 1 < K3(1IGI12 + h 1g12). 

Proof. Observing that k/h = X = const, it is obvious that (8.4) and (8.5) imply 
(4.8) and (4.3), respectively. 

Assume now that (4.8) or (4.3) holds. Observing that the coefficients of (5.1) and 
(5.2) are independent of k, it follows that also the solutions are independent of k 
and therefore (4.8) or (4.3) holds with ao = 0. Write now (8.1) and (8.3) in the form 

(8.6) Y,+1 = My, + G,, Sy, = LG + g, y = (Y(l) y... 

Using the relations 

(8.7) y(i+1) (i) + G 

we can eliminate y(2, * *, y(p+r) and get the Eqs. (5.1), (5.2) for y(l). Thus, we can 
estimate y IY'1) I I h and therefore, by (8.7), also I lY() I h. This proves the lemma. 

9. A Normal Form for the Matrix M. The aim of this section is to derive a 
normal form for the matrix M of the one-step formula (8.1). Let us first state the 
results. 

THEOREM 9.1. There exists a transformation T(z) with the following properties: 
(1) T(z), T-1(z) are uniformly boundedfor 1-< lzl < lzcl. 
(2) T(z) can be chosen to be analytic in the neighbourhood of every point zo with 

lzol > 1. 

(3) In a neighbourhood of every point zo with jzol > 1, there is a constant 8 > 0 
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such that 

(9.1) T(z)M(z)T7'(z) = {L 0], L*L < (I - S)I, N*N > (I + S)1. 

(4) In a neighbourhood of every point z- z0 with jzol = 1, 

M1 0 ... 0 

(9.2) T(z)M(z)T-1(z) - 
M2 0 ... 0 

.0 .. 0 ml. 

Here, 

Mi = M(?) + (z -zo)Mj1) + (z - zo)2Ms2) + ... 

with 

(9.3) = L } L*Lj < (1 - 6)I, N*N ? (1 + 3)I. 

O Nl, 

For j = 2, * , 1, the submatrices M; are of order r, X r, and M 0" has the form 

1 1 0 ... O 

0 1 1 0 ...0 

(9.4) Ms?) - et'i for j = 2, ***, 1*, 1* = some integer, 

0*.. 0 1 1 

O ... 0 1 

and 

1 0 ...0 

(9.5) M(0) e( eti 0 1 0 0 for] = 1* + 1, ** 1, 

0 *-. 01 

with # 5 $jfor i 5 j, 2 < i, j < 1. 
It should be pointed out that we could replace the Assumptions 5.2 or 5.3 by the 

assumption that there is a transformation T(z) as described in Theorem 9.1. 
The following two theorems contain more information about the blocks Mi. 
THEOREM 9.2. Assume that Mi") has the form (9.4) and let 

mril * Mrir- 

Then, Re(mr;1z0Cr)11r' # 0 for all complex a with Re a > 0 and all definitions of 
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(mr jlZO)l/ri. Therefore, the eigenvalues of M, are given by 

(9.6a) e' KiT = 1 + (mrji(z - Zo))/i + O(Z - ZO)/i, 

and, if li denotes the number Of Kir with IKijI < lfor IzI > 1, then 

(9.6b) Ij = 2r for ri 0(2) or l = 2(r, + 1) for r = 1(2). 

THEOREM 9.3. Assume that M'?' has the form (9.5). Then there is a transformation 
T,, analytic in a neighbourhood of z = zo such that 

a1 0 ... 

e' TTjMT1 = I + O a2 0 (z -z) 

(9.7) 0 0 Oar,. 
i31 1012 

.. 
lri 

+ 0 (32 
.. 2r ( ZO)2 + 

. . 
Z 

0 ... ** 0 I3rj 

Here, Re(2 f3j - aj)2z0 5 0, a,zo is real with 

(9.8) a1lzo < a2ZO < ? ?< adZO < 0 < ad+ lzo ?< ?< a, jz 

and 

(9.9) 2aTzOc + aZo -2 Re $ 0 O for allc > -2 T r = 1, 2, ,ri. 

Therefore, we can even assume that M, has the form 

(9.10) e it = L i 0 

O Ni 

with 

(9.11) IzI (L*Li - I) < -62(IzI - 1)!, 

Iz I (N*Ni - I) _ 52(IzI - 1)!, 52 > 0. 

Let us now prove these theorems. We start with the following essential lemma. 
LEMMA 9.1. There exists a constant K > 0 such that 

(9.12) sup I(M(z) - ei)l < K 'l | sreal. 

Therefore, if K is an eigenvalue of M(z), then 

(9.13) inf l(K - e) K1 IZI - 1 

Proof. Let us consider the Cauchy problem. By assumption, it is stable and 
therefore, by Theorem 4.1 and Lemma 8.2, the resolvent condition (8.5) is fulfilled, 
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i.e. for the solutions of (8.1) considered for all v = 0, i 1, i2, * without boundary 
conditions, there is an estimate 

((IzI - 1)/|IzI)' IIw|I I' K3I IGI I| 

The inequality (9.12) then follows if we Fourier transform (8.1) with respect to v. 
Proof of Theorem 9.1. If I zoI > 1, the existence of an analytic transformation T(z), 

such that (9.3) holds, follows directly from Lemma 5.1 and Lemma 9.1, because the 
eigenvalues of M are precisely the solutions of (5.6) which split up into the groups 
M1 and M2. 

If zo0 = 1, then it is well known that there is a- constant matrix T(z0) such that 

m(0) M1 0 ... 0 

T(zo)M(zo)T- (zo)= 0 M(?) 0 *. 0 

(0) 0 ... Ml? 

Now let Assumption 5.2 be fulfilled. If we can show that for the submatrices (9.4) 
and (9.5) always e't' 0 e$ t then (9.2) follows without difficulties. Assume that 
eit- = e-t" = edto for some z = zo. Then the equation 

(M(zo) - eitoI)y = o, = (Y(l) y(v+r)y 

i.e. 
p+r 

Ap(zo)eitoy(l) + E AP_,(zo)y(i) = O, 
i=l 

yU-l) _ eit y(i) = 0, 

which can be written as 

(9.* 1 4) (/-1 (i00) - E 0(i)z0-1 )Y(1) = 0, 

y e y I j = 2, 3, ... p + r, 

has at least two linearly independent solutions. Therefore, zo must be a solution of 

(9.15) det |_i(w) - Q ?(i#)ZO--1 = 0 

with multiplicity two at least. Consider now the equation 

det |_()-EQ%(iok-? | 0 

in a neighborhood of o = 0. By Assumption 5.2 for every solution z,Q) with z,(Q0) = 

zo, the relation (5.4) holds. Therefore, we can also consider K= e-t as a function of z 
and get, for every eigenvalue K,(Z) of M with K,(zO) = ei't, an expansion 

(9.16) K (Z) = eito + (Z - Z0)aK (Zo)/aZ + O(Z -Z?)1 

where aK,(Z0)/aZ = (az,0)1ae t)- . Furthermore, the number of linearly independent 
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eigenvectors is equal to the multiplicity of K,(Zo). This follows from the stability of 
the Cauchy problem as explained in the beginning of Section 5. But then we could 
transform the matrix 

O M,, 

to diagonal form which is a contradiction. This proves Theorem 9.1 if the Assumption 
5.2 is fulfilled. 

If Assumption 5.3 holds, then we can assume that the Ai, have diagonal form and 
get a scalar equation for every component. If the Aj,'s in (8.2) are scalars, then it is 
well known that the Jordan form of M has only one submatrix of type (9.4) associated 
with each distinct eigenvalue, and the theorem is proved. 

Proof of Theorem 9.2. Without restriction, we may assume that 0. = 0 and zo = 1. 
Let (M, - I)-', 0 < i, k < r = ri, denote the elements of (M, -I)-1. By Cramer's 
rule, 

(9.17) SUP I (M - I kI=1+ (-)_+O -) 
i,k s M k| det(M' - I) - (z - 1)(mri + O(z - 1)) 

and therefore, by Lemma 9.1, 

1mrll _ K, > 0. 

An easy calculation then shows that the eigenvalues of M, are given by (9.6a). Let 
now z = 1 + a and denote by (mr1/)l'r the different values of (mr.l)llr. Let 
P= Im(mr j)11r, then, by (9.17), 

Kj(1 + O(Izj - 1))(Izl - 1) < Idet(M; -ei)I = TII (K. - ei) 

= TI ((mrioy)r - i Im(mlo)l/r + O(a2/r)) 

Therefore, Re(mr ca)l/r = 0 for all o with Re o > 0 and (9.6b) follows by an easy 
calculation. 

Proof of Theorem 9.3. Without restriction, we can assume that {, = 1, zO = 1, 
that the eigenvalues of M"1' are all equal and that Ml1' has upper triangular form, i.e. 

(9.18) M= (1 + a(z- 1)I + (z- 1)D + (z- 1)2E+ E g) 

with 

O d12 .. dlr 

0 0 d23 ... d2r 

D= 

o ... 0 0. 

We want to show that a is real and different from zero. The eigenvalues of Mi, have 
the form 
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Kir = 1 + a(z 1),+ O(Z 1) 

Let z = 1 + x + iy, a = a1 + iy and so = a1y + yx; x, y, a1, -y real. Then 

|Ki, - e I = laix - 'y.yI + O((IxI + IyI)l+l/r), 

and Lemma 9.1 implies that a is real and different from zero. Now let x = y 1+ 1r 

y > 0 and (p = ay. We then get, from (9.18), 

I(M, - e~If)1I = |(ay1+1/r( + y 1+ D)(I + (y]/r)) 

(9.1I9) a 
r-1 

|a y- (l+l/r)(I + O(yll/r)) E (_(yl/r + i)a-ly/r D)| 

But Lemma 9.1 implies 

-(Mi eifI)-ll < Kl(lz - 1)-1 < K2y- (+1/r) 

and, therefore, (9.19) is possible only if D _ 0. We have thus proved that (9.7) and 
(9.8) hold. Therefore, we get for the eigenvalues 

Kir = 1 + a(Z 1) + i3(Z - 1)2 + O(Z - 1)2+1/r. 

Let 

z= 1+ x + iy, ja = aTy + 2xy Re 3 + (X2 _ y2) Iym O3, 

then Lemma 9.1 gives us, for all sufficiently small x, y, 

K-1(Ix + 1y12) < IaTx + x2 Re f3 + Y2(a2 /2 - Re 13T) 

- 2xy Im t3 + O(IxI + IyI)2+'/rI, 

and therefore Re(alr -2 Re /37) 5- 0. 
For x = cy2, C > -, we have Izi > 1, 

K 2 1 + 2aTcy2 + (aW - 2 Re /3)Y2. 

Assume now that (9.9) is not valid, i.e. there is a co such that 2a.co + a2 - 2 Re /O. = 0. 
Then, for ar < ?- < c < co, we would have I Ki ,I > 1, contradiction. 

Without restriction, we may now assume that e-QiM1 has the form (9.10) with 

a1 0 ... 0 

L= I + 0 a2 0 ... 0 
(z-zo) 

(O ... 0 adJ 

/1 /12 
. 

ld 

+ 0 032 
. 2d (Z Zo)2 + 

O ... 0 * ? d. 
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ad+1 0 0 * 

Nj = I;+ 0 
ad+2 

0 0.. ? (Z-Z?) 

0 * 0 a? i 

13d+1 f3d+l,d+2 ... /d+l,r; 

+ d+2 ... d+2,ri (Z - ZO) + * 

.0 .. 0 I3ri 

where IfloI are as small as we like. Then (9.11) follows by an easy calculation from 
(9.8) and (9.9). 

10. Necessary Stability Conditions. We again consider equations with constant 
coefficients and want to show that the conditions of Theorem 5.1 are necessary for 
stability. 

LEMMA 10.1 (RYABENKII-GODUNOV). A necessary condition for stability (in any 
sense) is that the homogeneous Eqs. (8.1), (8.3) have no nontrivial solution for Izl > 1. 

Proof. Follows directly from (8.4) or (8.5). 
For later purposes, we shall derive an explicit algebraic criterion: Let z with 

Izl > 1 be fixed and consider the Eqs. (8.1), (8.3). Let T(z) be the transformation in 
Theorem 9.1 and introduce y = T(z)w as a new variable. Then, (8.1) gets the form 

(10.1) Y+=[:] = [: 0 1 + TGP, 

and the boundary conditions (8.3) can be written as 

(10.2) D'(z)yl + Dl(z)y' = g + R(G). 

If g = G = 0, then the general solution of (10.1) which belongs to 12(h) is given by 
= L-y1, yI' 1 0 and we get at once 
LEMMA 10.2. The homogeneous Eqs. (8.1), (8.3) have no nontrivial solution if 

and only if 

(10.3) detlD'(z)I # 0. 

Let z = zo with jz,j = 1 be fixed and consider the homogeneous Eq. (8.1) with 
inhomogeneous boundary conditions (8.3). Let T(z) be the transformation of Theorem 
9.1 and introduce again y = Tw as a new variable. Then, (8.1) gets the form 

M1 0 ... 0 

(10.4) YV+= 0 M2 0 yv 

0 ... Mlj 

which, in partitioned form, can be written as 
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(10.5) YV+1 = Miy(;) I '( = , Ypr 

By (9.1) and (9.10), we can assume that M, for j = 1 and j = 1* + 1, * , 1, have 
the form 

Ml, = ei' {Li 0] 
O0 Ni, 

Li, N; having the properties defined in (9.3) and (9.11). Therefore, we can write 

(10.5) as 

(10.6) Y+i' = e' jLiy(,) = e t'Nyy(i, y(i) (y(ll) y(i2)) 

The other M,, j = 2, * ,1*, have, by (9.6a), (9.6b), i4 eigenvalues Ki, with jKiTj < 1. 
Correspondingly, we partition the vectors y >, j = 2, * *, l*, in the following way: 

(10.7) y(i1) = (y(i) . . . yy (2) = * , 

and introduce the following notation: 

(10.8) yI ((ll) Y(ll)), y"I (Y(12) ,y(l2)) 

Then, we can write the boundary conditions again in the form (10.2) and the following 
theorem holds. 

LEMMA 10.3. If the approximation is stable according to Definition 3.3, then the 
determinant condition (10.3) holdsfor all Izi > 1. 

In Sections 12 and 13, we shall prove that this condition is also sufficient for 
stability. 

Proof. For] = 2, * , 1*, it follows, from (9.6a), (9.6b), that there is a non- 
singular matrix 

(10 .9) U = I + (Z _ ZO)1/ri U(1) + 

such that 

Kil 1 0 * 0 

Uj Mju-1 
0 Kj2 1 0 *. 0 

0 ... 0 Kjrj 

with IKill < IK2 <I ? 
* *< IKilsI < 1 < IKi,j+jI -< 

... < IKirI lfor Izi > 1. Introducing, 
instead of y, 

I0 ... 0 

0 U2 0 ... 0 

V = ... ** UU 0 O y0 (I + O((Z Zo)/r))y. 

0 *.. 0 I 0 

0 ... 01I 
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as a new variable, then the boundary conditions (10.2) get the form 

(D'(z) + O(z - 0)V1 + (D"(z) + O(z - ZO)l/ )VV = g + R(G), r = max ri. 

If G _ 0, then v"' _ 0 and v' is given by 

vl (D'(z) + O(z zo)l)yg. 

If det D'(zo) = 0, we can choose g with ig = 1 in such a way that lim v' = o for 
z -> zo. This is not possible if the approximation is stable because (8.4) implies 
jv'l < const Ig . 

- We shall now consider Definition 3.2. For that purpose, we shall discuss a special 
class R of approximations which is defined by 

Definition 10.1. R is the class of approximations for which the normal form of M 
does not contain any block of type (9.4). 

There is no difficulty to characterize this class algebraically. 
THEOREM 10.1. Let z; denote the eigenvalues of (5.3). The approximation belongs 

to R if and only if Izil = 1 for some t = ~0 implies azj(tO)/Oat 0. 
Proof. If azi(Q0)/O9 = 0, then we can consider K = e't in a neighbourhood of 40 

as a function of z and get for the corresponding eigenvalue K = K(Z) of M an expansion 

K(Z) = eto + (z - zo)(9z(Qo)/Oe'Y)-1 + ... 

This is impossible if K(Z) is an eigenvalue of a block M, with M0'? of type (9.4). 
THEOREM 10.2. If the approximation is dissipative, then it belongs to R. 
Proof. We need only to consider a neighbourhood of t = 0, because, by assump- 

tion, Izz( )I < 1 for 0 < I < ?r. Consistency implies that there are precisely n eigen- 
values z; of (5.3) with z,(0) = 1 and for these eigenvalues we have 

z; = 1 + i(k/h)aji + O(t2). 

The other eigenvalues are smaller than one in absolute value. This proves the theorem. 
Let z = zo, lzol = 1, be fixed and assume that the approximation belongs to R. 

Introducing again y = Tw as a new variable, we can write the Eq. (8.1) in the form 

L, 0 0 0 yl 

(10.10) YV+= = L2 0 + TG, 
(4 J 0 0 N1 0 (4) 

LY+i 0 0 0 N2J -y 

where L1, N1 have the properties defined in (9.3), and L2, N2 consist of blocks as 
described in Theorem 9.3. 

The boundary conditions can again be written in the form (10.2) with y' = 

(Y(1), y(2))I y"I = ((3), y(4) ) and we may, without restriction, assume that they 
have the form 

(10.11) [D 0 ][Y1] + [E ; h + R (G). 

THEOREM 10.3. If an approximation of class R is stable according to Definition 3.2, 
then there is a constant K4 such that 
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(10.12) |ID-1 |-< K4, 

(10.13) ID_1EjjI < K4 Iz-zol -1, 

(10.14) |D l1E12 I < K4. 

Proof. Let G 0. Then y" ) = y4) = 0 and, therefore, y 2 = L1 D22 . 
If (10.12) does not hold, then D-1 grows at least like (z - zo)-1 and the inequality 
(8.5) cannot be fulfilled. In the same way, we can prove that ID-j 1?< constz - zol-1. 
Therefore, also (10.13) holds. Choose now TG = (0 0 0 (N* )-g4)'. Then g4) = 

(N2 N* - I)-'g4 - (Izl-z )-1g4 and (8.5) cannot be fulfilled if (10.14) does not hold. 

11. The Generalized Energy Method. We consider now the Eqs. (5.1) and 
(5.2) and write them again in the form (8.1), (8.3): 

(11.1) wP+1 = MwV + GP, Swl = g + R(G). 

THEOREM 11.1. Assume that there is a matrix H(z) which for all z with lzj > 1 
has the following properties: 

(1) H(z) is Hermitian and uniformly bounded. 
(2) There is a constant 51 > 0, such that, for all z with lzj > 1, 

(11.2) IzI(M*HM - H) ? 61(IzI - 1). 

(3) There are constants 5i > 0, j = 2, 3, such that, for all w, which fulfill the bound- 
ary conditions Sw1 = g + R(G), 

(11.3) w*Hwl ? 621wl12 - 63(1g12 + IR(G)12). 

Then, the approximation is stable in the sense of Definition 3.3. 
Proof. Let N > 0 be any natural number. Then, we get, from (11.1), 

Re(Z w* +iHMw h) - , w* 1Hw,+1h = -Re(Z w*+iHG h) N- 1 N-1\ N-1 

R w M*HMw,hM- Re W Hwp+) = -Re E w*MHGh). 

Adding the last two equations gives us 
N-1 

E w*(M*HM - H)wph + hw*Hwl - hw*HWN 
(11.4) P=1 

= -Re( E (w*+ 1 HG, + w* MHGP)h). 

Therefore, for N -* o, we get, from (11.2) and (11.3), 

al(IzI _1) I IWI 12 + h6 Z Wl 12 6~(zI 1)IIwIh+ h62 IZI IWi 

< h63 IZI Ig12 + h63 Izi IR(G)12 + Izl const IIGIIhjIWI Ih, 

i.e., 

lal(IZI - 1) IIWII2 + h62 Izl IW12 

(11.5) < h63 Izi I1g2 + h63 Iz IR(G)12 + const 6-1 IZ12 (Izl - 1)-1 I IGI I 2 2 h 

and the inequality (8.4) follows without difficulties. 
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There is no difficulty in constructing H for lzj > 1 + n7. 
THEOREM 11.2. Let i7 > 0 be a constant. If the Ryabenkii-Godunov condition is 

fulfilled, then we can construct Hfor 1 + i71< ?z z< ?zc4. 
Proof. It follows from Theorem 9.1 that there is a transformation T(z), such that 

T(z)M(z)T( = K ] L*L < (I - 6)1, N*N > (1 + 6)!, 

for 1 + 71 < Izl < jzj.1 
We choose now 

= cI 

where c with 0 < c < 1 is a constant to be chosen later. Then 

Izl(M*HM - H) = lIz T* {c(I- L*L) ] T ? Izi c6 
O N*N -I 

and, therefore, (11.2) is fulfilled. We also have 

w*Hwl = y[; Y0 = -c |Y2 + iY1i| 

and, by (10.2) and Lemma 10.2, we can easily choose c in such a way that (11.3) 
is fulfilled. This proves the theorem and, in addition, also Theorem 5.3. 

We shall now prove Theorem 5.4. For that purpose, we assume that h- = N, 
N natural number, and consider (8.1) for v = 1, 2, * * *, N, with boundary conditions 

(11.6) S(O)wl = g(O) + R0(G), S(1)WN = g(l) + R1(G). 

Let so E C' denote a monotone function with 

sp= o(x,E)= 0forx < E, 

= 1 forx>- l2 

and let A& = 1 - so. Then, we can write the Eqs. (8.1), (11.6) in the form 

(11.7) (sow) + = M(pw), + ((o,+1 - pP)wP+1 + (p,,Q, 

(11.7a) S(1)((PW)N = g(l) + R1(G), 

(11.8) (4, w),+1 = M(o w), + (,&+1 - w+)w +1 + A,GP, 

(11.8a) S(O)(V1w)j = g(O) + Ro(G). 

If we neglect the terms (^+ - sOI)w +i, (is + 1 - VI )w,+,, then we can consider (11.7) 
and (11.8) as the resolvent equation for the left and right quarter-plane problem, 
respectively. These are, by assumption, stable and, therefore, the estimate (8.4) or 
(8.5) holds for the system 
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Now, the terms (s?+, - so)w,, (i,&+' - q&,)w, can be considered as perturbations of 
order k and, therefore, Theorem 5.4 follows from Theorem 4.3. 

12. Dissipative Approximations. We assume -that the approximation belongs 
to the class R and that the Ryabenkii-Godunov condition is fulfilled. By Theorem 
11.2, we need to construct H only for 1 < Izi < 1 + 71. Theorem 10.2 implies that 
there is a transformation T = T(z) such that 

L1 0 0 0 

TMT-1 - 
0 L2 0 0 

0 0 N1 0 

io 0 0 N2. 

Here L1, N1 are of type (9.3) and L2, N2 consist of blocks as described in Theorem 9.3. 
Let y, = Tw,. Then, we can write the boundary conditions Sw1 = g + R(G) in the 
form (10.11). If for all IzI with 1 < Izi I 1 + 71 the determinants detIDi i 0, i = 1, 2, 
then there exists a constant K such that 

(12.1) ly(l) + ly(2)1 < K(Iy(3)1 + Iy'4'1 + Igl + R(G)). 

Choose now 

-cI 0 0 0 

H= T* O -cI O O T. 

O 0 I 0 

i0 0 0 I, 

Then there is no difficulty in showing that the inequalities (11.2) and (11.3) are 
fulfilled if we choose the constant c > 0 sufficiently small. Therefore, the approxima- 
tion is stable according to Definition 3.3. This proves Theorem 5.1 for dissipative 
approximations. 

If there are some z0j with Izoil = 1 for which only the inequalities (10.12)-(10.14) 
hold, then we have, instead of (12.1), 

(12.2) Iy(2) I < K(y21 3)1 + Iy'4' I + IgI + IR(G)I), 

Iy(l)I < K Z IZ-oiVl-1 (IY(3)1 + Igl + R(G)) + K I1 4)1. 
i 

Y 

In this case, we choose 

-c Iz I )2I 0 0 0 

H = T* 0 ?- (zI- ) 0 0 T 

0 0 I 0 

0 0 0 (IzI- I)I 
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and, by introducing y, = Tw, into (11.4), a simple calculation shows that we can 
fulfill the inequality (8.5) for sufficiently small c. Therefore, the approximation is 
stable in the sense of Definition 3.2. This proves Theorem 5.2. 

13. Nondissipative Approximations. In this section, we want to prove Theorem 
5.1 for nondissipative approximations. Let z0 with jZjl = 1 be fixed. By Theorems 
9.1-9.3, there is, in a neighbourhood of z0, an analytic transformation T = T(z) such 
that 

M1 0 ... 0 

TMT-1 = 0 M2 0 .0. 0 

where the matrices M, have the same properties as described in Theorems 9.1-9.3. 
We now choose H in the form 

R1 0 ... 0 

H= T* 0 R2 0 .. 0 T 

and get, from Lemma 10.3, 
LEMMA 13.1. Let the determinant condition (10.3) be fulfilled for lzj ? 1. An H 

which fulfills the conditions of Theorem 11.1 and thus proves stability in the sense of 
Definition 3.3 can be constructed in a neighbourhood of z = z0 if, for every constant 
c > 0, there is a constant 51 > 0 and a Hermitian Rj(z) such that 

(13.1) Izl (MAfRjMj - Rj) ? 6l(lzl - 1), 

(13.2) (y(i))*Riy(') > -c /y(il'12 + Iy'2)12. 

Here y(i) = (y( l), y(i2)) is defined by (10.5) and (10.8). 
We shall now show how R, satisfying these conditions can be constructed. In the 

same way as earlier, we can prove that for j = 1, and j = 1* + 1, * , 1, 

R= [CI 0J 

[ 

I, 

fulfills the conditions (13.1), (13.2). 
For j = 2, * , 1*, we can write the corresponding M, as exponential functions 

(13.3) Mj(z) = eMi (z) 

with 

0 1 -2 1 

(13.4) M,(zo)= its+ 0 0 1 2 3 
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Furthermore, if ki,T Ki, denote the eigenvalues of R;, M;, respectively, then 
ezir = Kir. From Lemma 9.1 and Cramer's rule, it follows that there are constants 
cj > 0 such that 

K(IZI - 1)' > sup I(M, - eI)'1 | c1 SUP s I (KiT - et )yl 

= cl sup |I (e - e~ () | c2 sup |I (KjT - 

> C3 SUp I(M, - i(pI)j11. 
40 

We have thus proved that, in a neighbourhood of z0, 

(13.5) sup j(M, - iI)pI1 < const jljz - 11-1, lzj > 1. 

By assumption, the approximation is nondissipative. Therefore it is stable for the 
Cauchy problem, not only for t -> + o but also for t - . - x. Thus, the resolvent 
condition (9.12) and (13.5) hold also for Izi < 1. Now let z = e' and z0 = e'8. Then 
we have proved 

LEMMA 13.2. The matrices M, are in a neighbourhood of s, analytic functions of s" 
and the double-sided resolvent condition 

(13.6) sup l(Mj - icpI)'j < const jResj1 

holds. 
In a similar way as in [4], Ralston [6] has shown that (13.4) and (13.6) imply that 

for every constant c > 0 there is a constant a, > 0 and Hermitian Rj(z) such that 

(13.7) R,M, + MRIi > l(lzl - 1) 61 Re s, z = e 

(13.8) (y(i'))*Rijy') > -c ly(il 12 + Iy(i2)12. 

We shall now show that we can choose R, = RA. Consider the differential equation 

dy/dx = Msy, 0 < x < 1, 
then 

y*(O)(eMi f.eMi - Rj)y(O) = 2 Re(f y*R; dy/dx dx) 

= 2 Re(f y*fR .2y dx) _ 261(Iz l- 1) - y(0)/2. 

Observing that y(O) is arbitrary, we see that (13.1) is fulfilled. The inequality (13.2) 
is also fulfilled by (13.8), and we have thus been able to construct Ri for j = 1, * , 1, 
satisfying the conditions of Lemma 13.1. This proves Theorem 5.1 also for the 
nondissipative case. 
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